Data labeling with LLMs, validating with humans
This notebook provides example EDSL code for conducting a data labeling task with large language models and validating responses with humans. The example below consists of the following steps, which can be conducted entirely in EDSL code or interactively at your Coop account:
Construct questions about a dataset, using a placeholder in each question for the individual piece of data to be labeled (each answer is a “label” for a piece of data)
Combine the questions in a survey to administer them together
Optionally create AI agent personas to answer the questions (e.g., if there is relevant expertise or background for the task)
Select language models to generate the answers (for the agents, or without referencing any AI personas)
Run the survey with the data, agents and models to generate a formatted dataset of results
Select questions and data that you want to validate with humans to create a subset of your survey (or leave it unchanged to run the entire survey with humans)
Send a web-based version of the survey to human respondents
Compare LLM and human answers, and iterate on the data labeling survey as needed!
Before running the code below please see instructions on getting started using Expected Parrot tools for AI research.
Construct questions about a dataset
We start by creating questions about a dataset, where each answer will provide a “label” for each piece of data. EDSL comes with many common question types that we can choose from based on the form of the response that we want to get back from a model (multiple choice, linear scale, matrix, etc.).
We use a “scenario” placeholder in each question text for data that we want to add to it. This method allows us to efficiently readminister a question for each piece of data. Scenarios can be created from many types of data, including PNG, PDF, CSV, docs, lists, tables, videos, and other types.
We combine the questions in a survey in order to administer them together, asynchronously by default, or else according to any logic or rules that we want to add (e.g., skip/stop rules).
[1]:
from edsl import ScenarioList, QuestionList, QuestionNumerical, Survey
q1 = QuestionList(
question_name = "characters",
question_text = "Name all of the characters in this show: {{ scenario.show }}"
)
q2 = QuestionNumerical(
question_name = "years",
question_text = "Identify the year this show first aired: {{ scenario.show }}"
)
scenarios = ScenarioList.from_source("list", "show", ["The Simpsons", "South Park", "I Love Lucy"])
questions = q1.loop(scenarios) + q2.loop(scenarios)
survey = Survey(questions)
Generate data “labels” using LLMs
EDSL allows us to specify the models that we want to use to answer the questions, and optionally design AI agent personas for the models to reference in answering the questions. This can be useful if you want to reference specific expertise that is relevant to the labeling task.
We administer the questions by adding the scenarios, agents and models to the survey and calling the run()
method. This generates a formatted dataset of Results
that we can analyze with built-in methods for working with results.
[2]:
from edsl import Agent, AgentList, Model, ModelList
agents = AgentList([
Agent(traits = {"persona":"You watch a lot of TV."})
])
models = ModelList([
Model("gemini-1.5-flash", service_name = "google"),
Model("gpt-4o", service_name = "openai")
])
results = survey.by(scenarios).by(agents).by(models).run()
Service | Model | Input Tokens | Input Cost | Output Tokens | Output Cost | Total Cost | Total Credits |
---|---|---|---|---|---|---|---|
gemini-1.5-flash | 1,995 | $0.0002 | 1,854 | $0.0006 | $0.0008 | 0.08 | |
openai | gpt-4o | 2,112 | $0.0053 | 1,353 | $0.0136 | $0.0189 | 1.89 |
Totals | 4,107 | $0.0055 | 3,207 | $0.0142 | $0.0197 | 1.97 |
You can obtain the total credit cost by multiplying the total USD cost by 100. A lower credit cost indicates that you saved money by retrieving responses from the universal remote cache.
Results are accessible at your Coop account (see link above ^) and at your workspace. We can inspect a list of all the components of the results:
[3]:
results.columns
[3]:
0 | |
---|---|
0 | agent.agent_index |
1 | agent.agent_instruction |
2 | agent.agent_name |
3 | agent.persona |
4 | answer.characters_0 |
5 | answer.characters_1 |
6 | answer.characters_2 |
7 | answer.years_0 |
8 | answer.years_1 |
9 | answer.years_2 |
10 | cache_keys.characters_0_cache_key |
11 | cache_keys.characters_1_cache_key |
12 | cache_keys.characters_2_cache_key |
13 | cache_keys.years_0_cache_key |
14 | cache_keys.years_1_cache_key |
15 | cache_keys.years_2_cache_key |
16 | cache_used.characters_0_cache_used |
17 | cache_used.characters_1_cache_used |
18 | cache_used.characters_2_cache_used |
19 | cache_used.years_0_cache_used |
20 | cache_used.years_1_cache_used |
21 | cache_used.years_2_cache_used |
22 | comment.characters_0_comment |
23 | comment.characters_1_comment |
24 | comment.characters_2_comment |
25 | comment.years_0_comment |
26 | comment.years_1_comment |
27 | comment.years_2_comment |
28 | generated_tokens.characters_0_generated_tokens |
29 | generated_tokens.characters_1_generated_tokens |
30 | generated_tokens.characters_2_generated_tokens |
31 | generated_tokens.years_0_generated_tokens |
32 | generated_tokens.years_1_generated_tokens |
33 | generated_tokens.years_2_generated_tokens |
34 | iteration.iteration |
35 | model.frequency_penalty |
36 | model.inference_service |
37 | model.logprobs |
38 | model.maxOutputTokens |
39 | model.max_tokens |
40 | model.model |
41 | model.model_index |
42 | model.presence_penalty |
43 | model.stopSequences |
44 | model.temperature |
45 | model.topK |
46 | model.topP |
47 | model.top_logprobs |
48 | model.top_p |
49 | prompt.characters_0_system_prompt |
50 | prompt.characters_0_user_prompt |
51 | prompt.characters_1_system_prompt |
52 | prompt.characters_1_user_prompt |
53 | prompt.characters_2_system_prompt |
54 | prompt.characters_2_user_prompt |
55 | prompt.years_0_system_prompt |
56 | prompt.years_0_user_prompt |
57 | prompt.years_1_system_prompt |
58 | prompt.years_1_user_prompt |
59 | prompt.years_2_system_prompt |
60 | prompt.years_2_user_prompt |
61 | question_options.characters_0_question_options |
62 | question_options.characters_1_question_options |
63 | question_options.characters_2_question_options |
64 | question_options.years_0_question_options |
65 | question_options.years_1_question_options |
66 | question_options.years_2_question_options |
67 | question_text.characters_0_question_text |
68 | question_text.characters_1_question_text |
69 | question_text.characters_2_question_text |
70 | question_text.years_0_question_text |
71 | question_text.years_1_question_text |
72 | question_text.years_2_question_text |
73 | question_type.characters_0_question_type |
74 | question_type.characters_1_question_type |
75 | question_type.characters_2_question_type |
76 | question_type.years_0_question_type |
77 | question_type.years_1_question_type |
78 | question_type.years_2_question_type |
79 | raw_model_response.characters_0_cost |
80 | raw_model_response.characters_0_input_price_per_million_tokens |
81 | raw_model_response.characters_0_input_tokens |
82 | raw_model_response.characters_0_one_usd_buys |
83 | raw_model_response.characters_0_output_price_per_million_tokens |
84 | raw_model_response.characters_0_output_tokens |
85 | raw_model_response.characters_0_raw_model_response |
86 | raw_model_response.characters_1_cost |
87 | raw_model_response.characters_1_input_price_per_million_tokens |
88 | raw_model_response.characters_1_input_tokens |
89 | raw_model_response.characters_1_one_usd_buys |
90 | raw_model_response.characters_1_output_price_per_million_tokens |
91 | raw_model_response.characters_1_output_tokens |
92 | raw_model_response.characters_1_raw_model_response |
93 | raw_model_response.characters_2_cost |
94 | raw_model_response.characters_2_input_price_per_million_tokens |
95 | raw_model_response.characters_2_input_tokens |
96 | raw_model_response.characters_2_one_usd_buys |
97 | raw_model_response.characters_2_output_price_per_million_tokens |
98 | raw_model_response.characters_2_output_tokens |
99 | raw_model_response.characters_2_raw_model_response |
100 | raw_model_response.years_0_cost |
101 | raw_model_response.years_0_input_price_per_million_tokens |
102 | raw_model_response.years_0_input_tokens |
103 | raw_model_response.years_0_one_usd_buys |
104 | raw_model_response.years_0_output_price_per_million_tokens |
105 | raw_model_response.years_0_output_tokens |
106 | raw_model_response.years_0_raw_model_response |
107 | raw_model_response.years_1_cost |
108 | raw_model_response.years_1_input_price_per_million_tokens |
109 | raw_model_response.years_1_input_tokens |
110 | raw_model_response.years_1_one_usd_buys |
111 | raw_model_response.years_1_output_price_per_million_tokens |
112 | raw_model_response.years_1_output_tokens |
113 | raw_model_response.years_1_raw_model_response |
114 | raw_model_response.years_2_cost |
115 | raw_model_response.years_2_input_price_per_million_tokens |
116 | raw_model_response.years_2_input_tokens |
117 | raw_model_response.years_2_one_usd_buys |
118 | raw_model_response.years_2_output_price_per_million_tokens |
119 | raw_model_response.years_2_output_tokens |
120 | raw_model_response.years_2_raw_model_response |
121 | reasoning_summary.characters_0_reasoning_summary |
122 | reasoning_summary.characters_1_reasoning_summary |
123 | reasoning_summary.characters_2_reasoning_summary |
124 | reasoning_summary.years_0_reasoning_summary |
125 | reasoning_summary.years_1_reasoning_summary |
126 | reasoning_summary.years_2_reasoning_summary |
127 | scenario.scenario_index |
128 | scenario.show |
Here we select components to display in a table:
[4]:
results.select("model", "persona", "characters_0", "years_0", "characters_1", "years_1", "characters_2", "years_2")
[4]:
model.model | agent.persona | answer.characters_0 | answer.years_0 | answer.characters_1 | answer.years_1 | answer.characters_2 | answer.years_2 | |
---|---|---|---|---|---|---|---|---|
0 | gemini-1.5-flash | You watch a lot of TV. | ['Homer Simpson', 'Marge Simpson', 'Bart Simpson', 'Lisa Simpson', 'Maggie Simpson', 'Grandpa Simpson', 'Apu Nahasapeemapetilon', 'Ned Flanders', 'Moe Szyslak', 'Barney Gumble', 'Chief Wiggum', 'Krusty the Clown', 'Milhouse Van Houten', 'Nelson Muntz', 'Lenny Leonard', 'Carl Carlson', 'Smithers', 'Burns', 'Sideshow Bob', 'Ralph Wiggum'] | 1989 | ['Stan Marsh', 'Kyle Broflovski', 'Eric Cartman', 'Kenny McCormick', 'Randy Marsh', 'Sharon Marsh', 'Gerald Broflovski', 'Sheila Broflovski', 'Butters Stotch', 'Chef', 'Mr. Garrison', 'Mr. Mackey', 'Jimbo Kern', 'Ned Gerblansky', 'Officer Barbrady', 'Liane Cartman', 'Scott Tenorman', 'Wendy Testaburger', 'Heidi Turner', 'Token Black', 'Clyde Donovan', 'Craig Tucker', 'Tweek Tweak', 'Timmy Burch', 'Kevin Stoley', 'Ike Broflovski', 'Leopold Stotch'] | 1997 | ['Lucy Ricardo', 'Ricky Ricardo', 'Fred Mertz', 'Ethel Mertz', 'Little Ricky Ricardo', 'Mr. and Mrs. Howard'] | 1951 |
1 | gpt-4o | You watch a lot of TV. | ['Homer Simpson', 'Marge Simpson', 'Bart Simpson', 'Lisa Simpson', 'Maggie Simpson', 'Abe Simpson', 'Ned Flanders', 'Milhouse Van Houten', 'Mr. Burns', 'Waylon Smithers', 'Krusty the Clown', 'Principal Skinner', 'Moe Szyslak', 'Barney Gumble', 'Chief Wiggum', 'Ralph Wiggum', 'Apu Nahasapeemapetilon', 'Sideshow Bob', 'Edna Krabappel', 'Patty Bouvier', 'Selma Bouvier', 'Comic Book Guy', 'Nelson Muntz', 'Groundskeeper Willie', 'Lenny Leonard', 'Carl Carlson', 'Dr. Hibbert', 'Reverend Lovejoy', 'Mayor Quimby', 'Martin Prince'] | 1989 | ['Eric Cartman', 'Stan Marsh', 'Kyle Broflovski', 'Kenny McCormick', 'Randy Marsh', 'Butters Stotch', 'Mr. Garrison', 'Chef', 'Wendy Testaburger', 'Mr. Mackey'] | 1997 | ['Lucy Ricardo', 'Ricky Ricardo', 'Ethel Mertz', 'Fred Mertz'] | 1951 |
2 | gemini-1.5-flash | You watch a lot of TV. | ['Homer Simpson', 'Marge Simpson', 'Bart Simpson', 'Lisa Simpson', 'Maggie Simpson', 'Abe Simpson', 'Clancy Wiggum', 'Ned Flanders', 'Moe Szyslak', 'Apu Nahasapeemapetilon', 'Krusty the Clown', 'Milhouse Van Houten', 'Barney Gumble', 'Lenny Leonard', 'Carl Carlson'] | 1989 | ['Stan Marsh', 'Kyle Broflovski', 'Eric Cartman', 'Kenny McCormick', 'Randy Marsh', 'Sharon Marsh', 'Gerald Broflovski', 'Sheila Broflovski', 'Butters Stotch', 'Chef', 'Mr. Garrison', 'Mr. Mackey', 'Jimbo Kern', 'Ned Gerblansky', 'Officer Barbrady', 'Liane Cartman', 'Scott Tenorman', 'Wendy Testaburger', 'Heidi Turner', 'Token Black', 'Clyde Donovan', 'Craig Tucker', 'Tweek Tweak', 'Timmy Burch', 'Kevin Stoley', 'Ike Broflovski', 'Leopold Stotch'] | 1997 | ['Lucy Ricardo', 'Ricky Ricardo', 'Fred Mertz', 'Ethel Mertz', 'Little Ricky Ricardo', 'Mr. Mooney'] | 1951 |
3 | gpt-4o | You watch a lot of TV. | ['Homer Simpson', 'Marge Simpson', 'Bart Simpson', 'Lisa Simpson', 'Maggie Simpson', 'Abe Simpson', 'Ned Flanders', 'Mr. Burns', 'Waylon Smithers', 'Moe Szyslak', 'Barney Gumble', 'Seymour Skinner', 'Edna Krabappel', 'Nelson Muntz', 'Milhouse Van Houten', 'Ralph Wiggum', 'Chief Wiggum', 'Apu Nahasapeemapetilon', 'Krusty the Clown', 'Sideshow Bob'] | 1989 | ['Eric Cartman', 'Stan Marsh', 'Kyle Broflovski', 'Kenny McCormick', 'Butters Stotch', 'Randy Marsh', 'Mr. Garrison', 'Chef', 'Mr. Mackey', 'Wendy Testaburger', 'Jimmy Valmer', 'Timmy Burch', 'Terrance', 'Phillip', 'Token Black', 'Tweek Tweak', 'Craig Tucker', 'Clyde Donovan', 'Bebe Stevens', 'Ike Broflovski', 'Shelley Marsh', 'Gerald Broflovski', 'Sheila Broflovski', 'Sharon Marsh', 'Liane Cartman', 'Principal Victoria', 'Officer Barbrady'] | 1997 | ['Lucy Ricardo', 'Ricky Ricardo', 'Ethel Mertz', 'Fred Mertz'] | 1951 |
4 | gemini-1.5-flash | You watch a lot of TV. | ['Homer Simpson', 'Marge Simpson', 'Bart Simpson', 'Lisa Simpson', 'Maggie Simpson', 'Grandpa Simpson', 'Apu Nahasapeemapetilon', 'Ned Flanders', 'Moe Szyslak', 'Barney Gumble', 'Chief Wiggum', 'Krusty the Clown', 'Milhouse Van Houten', 'Nelson Muntz', 'Principal Skinner', 'Superintendent Chalmers', 'Lenny Leonard', 'Carl Carlson', 'Smithers', 'Burns'] | 1989 | ['Stan Marsh', 'Kyle Broflovski', 'Eric Cartman', 'Kenny McCormick', 'Randy Marsh', 'Sharon Marsh', 'Gerald Broflovski', 'Sheila Broflovski', 'Butters Stotch', 'Chef', 'Mr. Garrison', 'Mr. Mackey', 'Jimbo Kern', 'Ned Gerblansky', 'Officer Barbrady', 'Terrance', 'Phillip', 'Satan', 'Jesus', 'God'] | 1997 | ['Lucy Ricardo', 'Ricky Ricardo', 'Ethel Mertz', 'Fred Mertz', 'Little Ricky Ricardo', 'Mr. and Mrs. Howard'] | 1951 |
5 | gpt-4o | You watch a lot of TV. | ['Homer Simpson', 'Marge Simpson', 'Bart Simpson', 'Lisa Simpson', 'Maggie Simpson', 'Ned Flanders', 'Mr. Burns', 'Waylon Smithers', 'Apu Nahasapeemapetilon', 'Moe Szyslak', 'Krusty the Clown', 'Chief Wiggum', 'Milhouse Van Houten', 'Seymour Skinner', 'Edna Krabappel', 'Barney Gumble', 'Ralph Wiggum', 'Nelson Muntz', 'Comic Book Guy', 'Groundskeeper Willie', 'Patty Bouvier', 'Selma Bouvier', 'Sideshow Bob', 'Lenny Leonard', 'Carl Carlson', 'Dr. Hibbert', 'Reverend Lovejoy', 'Mayor Quimby'] | 1989 | ['Stan Marsh', 'Kyle Broflovski', 'Eric Cartman', 'Kenny McCormick', 'Butters Stotch', 'Randy Marsh', 'Mr. Garrison', 'Mr. Mackey', 'Chef', 'Wendy Testaburger', 'Token Black', 'Tweek Tweak', 'Jimmy Valmer', 'Timmy Burch', 'Bebe Stevens'] | 1997 | ['Lucy Ricardo', 'Ricky Ricardo', 'Ethel Mertz', 'Fred Mertz'] | 1951 |
Run the survey with human respondents
We can validate some of all of the responses with human respondents by calling the humanize()
method on the version of the survey that we want to validate with humans. This method generates a shareable URL for a web-based version of the survey that you can distribute, together with a URL for tracking the responses at your Coop account.
Here we create a new version of the survey to add some screening/information questions of the humans that answer it:
[5]:
from edsl import QuestionLinearScale
q3 = QuestionLinearScale(
question_name = "tv_viewing",
question_text = "On a scale from 1 to 5, how much tv would you say that you've watched in your life?",
question_options = [1,2,3,4,5],
option_labels = {
1:"None at all",
5:"A ton"
}
)
q4 = QuestionNumerical(
question_name = "age",
question_text = "How old are you (in years)?"
)
new_questions = [q3, q4]
human_survey = Survey(questions + new_questions)
[6]:
human_survey.humanize()
[6]:
{'project_name': 'Project',
'uuid': 'bbb84776-3364-4bc9-b028-0119cd84d480',
'admin_url': 'https://www.expectedparrot.com/home/projects/bbb84776-3364-4bc9-b028-0119cd84d480',
'respondent_url': 'https://www.expectedparrot.com/respond/bbb84776-3364-4bc9-b028-0119cd84d480'}
Responses automatically appear at your Coop account, and you can import them into your workspace using Coop
methods:
[7]:
from edsl import Coop
human_results = Coop().get_project_human_responses("bbb84776-3364-4bc9-b028-0119cd84d480")
human_results
[7]:
Results observations: 2; agents: 2; models: 1; scenarios: 1; questions: 8; Survey question names: ['characters_0', 'characters_1', 'characters_2', 'years_0', 'years_1', 'years_2', ...];
characters_1 | age | years_1 | tv_viewing | years_0 | characters_0 | years_2 | characters_2 | scenario_index | agent_index | agent_instruction | agent_name | model | temperature | inference_service | model_index | characters_2_user_prompt | characters_2_system_prompt | years_1_system_prompt | years_2_user_prompt | years_2_system_prompt | years_1_user_prompt | characters_0_user_prompt | years_0_user_prompt | characters_1_system_prompt | characters_0_system_prompt | years_0_system_prompt | characters_1_user_prompt | tv_viewing_user_prompt | tv_viewing_system_prompt | age_user_prompt | age_system_prompt | characters_2_input_tokens | years_1_one_usd_buys | age_output_price_per_million_tokens | tv_viewing_cost | years_1_input_tokens | years_1_output_price_per_million_tokens | characters_1_output_tokens | years_2_one_usd_buys | years_1_cost | characters_2_output_price_per_million_tokens | characters_0_one_usd_buys | years_2_input_price_per_million_tokens | years_1_raw_model_response | years_0_input_tokens | characters_1_output_price_per_million_tokens | characters_0_input_tokens | years_2_raw_model_response | tv_viewing_one_usd_buys | characters_1_input_price_per_million_tokens | characters_2_input_price_per_million_tokens | age_input_tokens | years_2_input_tokens | tv_viewing_raw_model_response | years_2_output_tokens | characters_2_raw_model_response | age_input_price_per_million_tokens | years_0_one_usd_buys | characters_1_raw_model_response | years_2_output_price_per_million_tokens | years_0_output_tokens | tv_viewing_input_tokens | years_0_cost | age_cost | characters_2_output_tokens | characters_1_input_tokens | age_one_usd_buys | tv_viewing_output_tokens | characters_2_cost | characters_0_output_price_per_million_tokens | characters_0_output_tokens | years_1_input_price_per_million_tokens | years_1_output_tokens | characters_0_input_price_per_million_tokens | age_output_tokens | characters_1_cost | years_0_input_price_per_million_tokens | characters_1_one_usd_buys | characters_0_cost | characters_0_raw_model_response | years_0_raw_model_response | tv_viewing_output_price_per_million_tokens | age_raw_model_response | years_2_cost | years_0_output_price_per_million_tokens | characters_2_one_usd_buys | tv_viewing_input_price_per_million_tokens | iteration | characters_1_question_text | characters_2_question_text | tv_viewing_question_text | years_1_question_text | years_2_question_text | characters_0_question_text | years_0_question_text | age_question_text | characters_0_question_options | years_1_question_options | characters_2_question_options | tv_viewing_question_options | characters_1_question_options | years_0_question_options | years_2_question_options | age_question_options | characters_1_question_type | characters_2_question_type | age_question_type | tv_viewing_question_type | characters_0_question_type | years_1_question_type | years_2_question_type | years_0_question_type | age_comment | tv_viewing_comment | characters_2_comment | characters_0_comment | years_0_comment | characters_1_comment | years_1_comment | years_2_comment | characters_1_generated_tokens | years_0_generated_tokens | tv_viewing_generated_tokens | characters_2_generated_tokens | characters_0_generated_tokens | years_1_generated_tokens | age_generated_tokens | years_2_generated_tokens | characters_2_cache_used | tv_viewing_cache_used | characters_1_cache_used | years_0_cache_used | years_1_cache_used | characters_0_cache_used | age_cache_used | years_2_cache_used | characters_2_cache_key | years_0_cache_key | age_cache_key | years_2_cache_key | characters_0_cache_key | characters_1_cache_key | years_1_cache_key | tv_viewing_cache_key | characters_2_reasoning_summary | tv_viewing_reasoning_summary | years_1_reasoning_summary | years_2_reasoning_summary | years_0_reasoning_summary | characters_1_reasoning_summary | characters_0_reasoning_summary | age_reasoning_summary | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ['Cartman', 'Stewie'] | 46 | 1998 | 5 | 1989 | ['Homer', 'Marge', 'Randall', 'Bort'] | 1953 | ['Lucy ', 'Dezi'] | 0 | 0 | nan | a782895b-e5dc-41cb-80e8-8a956db1ee18 | test | 0.500000 | test | 0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | Not Applicable | nan | nan | nan | Not Applicable | nan | nan | nan | nan | nan | Not Applicable | nan | Not Applicable | nan | nan | Not Applicable | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | Not Applicable | Not Applicable | nan | Not Applicable | nan | nan | nan | nan | 0 | Name all of the characters in this show: South Park | Name all of the characters in this show: I Love Lucy | On a scale from 1 to 5, how much tv would you say that you've watched in your life? | Identify the year this show first aired: South Park | Identify the year this show first aired: I Love Lucy | Name all of the characters in this show: The Simpsons | Identify the year this show first aired: The Simpsons | How old are you (in years)? | nan | nan | nan | [1, 2, 3, 4, 5] | nan | nan | nan | nan | list | list | numerical | linear_scale | list | numerical | numerical | numerical | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | nan | nan | nan | nan | nan | nan | nan | nan |
1 | ["I don't know"] | 11 | 2000 | 4 | 1989 | ['Homer', 'Marge', 'Bart', 'Lisa', 'Maggie', 'Grandpa', 'Mr. Burns', 'Apu', 'Snake', 'Moe', 'Krusty', 'Lenny', 'Carl', 'Barney', 'Smithers', 'Sideshow Mel', 'Patty', 'Selma', 'Martin', 'Nelson', 'Ralph', 'Chief Wiggum', 'Reverend Lovejoy', "Santa's Little Helper", 'Snowball II', 'Miss Crabapple', 'Miss Hoover', 'Principal Skinner', 'Willie', 'Superintendent Chalmers', 'Lou', 'Comic Book Guy', 'Sherry', 'Terry', 'Fat Tony', 'Johnny Tightlips', 'Jimmy the Squealer', 'Mayor Quimby', 'Sideshow Bob', 'Luigi', 'Spiderpig', 'Duffman', 'Larry', 'Grandma', 'Mr. Teasy'] | 2010 | ['Uhhhhh no'] | 0 | 1 | nan | 083d74cb-64c6-4560-809c-1a09cc9d8955 | test | 0.500000 | test | 0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | Not Applicable | nan | nan | nan | Not Applicable | nan | nan | nan | nan | nan | Not Applicable | nan | Not Applicable | nan | nan | Not Applicable | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | Not Applicable | Not Applicable | nan | Not Applicable | nan | nan | nan | nan | 0 | Name all of the characters in this show: South Park | Name all of the characters in this show: I Love Lucy | On a scale from 1 to 5, how much tv would you say that you've watched in your life? | Identify the year this show first aired: South Park | Identify the year this show first aired: I Love Lucy | Name all of the characters in this show: The Simpsons | Identify the year this show first aired: The Simpsons | How old are you (in years)? | nan | nan | nan | [1, 2, 3, 4, 5] | nan | nan | nan | nan | list | list | numerical | linear_scale | list | numerical | numerical | numerical | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | This is a real survey response from a human. | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable | nan | nan | nan | nan | nan | nan | nan | nan |
[8]:
human_results.select("age", "tv_viewing", "characters_0", "years_0", "characters_1", "years_1", "characters_2", "years_2")
[8]:
answer.age | answer.tv_viewing | answer.characters_0 | answer.years_0 | answer.characters_1 | answer.years_1 | answer.characters_2 | answer.years_2 | |
---|---|---|---|---|---|---|---|---|
0 | 46 | 5 | ['Homer', 'Marge', 'Randall', 'Bort'] | 1989 | ['Cartman', 'Stewie'] | 1998 | ['Lucy ', 'Dezi'] | 1953 |
1 | 11 | 4 | ['Homer', 'Marge', 'Bart', 'Lisa', 'Maggie', 'Grandpa', 'Mr. Burns', 'Apu', 'Snake', 'Moe', 'Krusty', 'Lenny', 'Carl', 'Barney', 'Smithers', 'Sideshow Mel', 'Patty', 'Selma', 'Martin', 'Nelson', 'Ralph', 'Chief Wiggum', 'Reverend Lovejoy', "Santa's Little Helper", 'Snowball II', 'Miss Crabapple', 'Miss Hoover', 'Principal Skinner', 'Willie', 'Superintendent Chalmers', 'Lou', 'Comic Book Guy', 'Sherry', 'Terry', 'Fat Tony', 'Johnny Tightlips', 'Jimmy the Squealer', 'Mayor Quimby', 'Sideshow Bob', 'Luigi', 'Spiderpig', 'Duffman', 'Larry', 'Grandma', 'Mr. Teasy'] | 1989 | ["I don't know"] | 2000 | ['Uhhhhh no'] | 2010 |